A Co-Ranking Algorithm for Learning Listwise Ranking Functions from Unlabeled Data
نویسنده
چکیده
In this paper, we propose a co-ranking algorithm that trains listwise ranking functions using unlabeled data simultaneously with a small number of labeled data. The coranking algorithm is based on the co-training paradigm that is a very common scheme in the semi-supervised classification framework. First, we use two listwise ranking methods to construct base ranker and assistant ranker, respectively, by learning from the current labeled set. Then we score documents of unlabeled query set by these rankers. For each newly labeled query, two ideal document permutations are obtained with different ranking functions. Thus, likelihood loss is employed to evaluate the similarity of two document permutations. At last we remove those queries having lower likelihood of document permutations from unlabeled set to labeled one. The former three steps are iterated until the ranking performance of base ranker begins to decrease on validation set. In this method, we assume that the unlabeled data follows the same generative distribution as the labeled data. The effectiveness of the presented co-ranking algorithm is demonstrated by experimental results on the benchmark datasets LETOR.
منابع مشابه
Generalization Analysis of Listwise Learning-to-Rank Algorithms Using Rademacher Average
This paper presents theoretical analysis on the generalization ability of listwise learning-to-rank algorithms using Rademacher Average. The paper first proposes a theoretical framework for ranking and then proves a theorem which gives a generalization bound to a listwise ranking algorithm based on Rademacher Average of the class of compound functions operating on the corresponding listwise los...
متن کاملA Representation Theory for Ranking Functions
This paper presents a representation theory for permutation-valued functions, which in their general form can also be called listwise ranking functions. Pointwise ranking functions assign a score to each object independently, without taking into account the other objects under consideration; whereas listwise loss functions evaluate the set of scores assigned to all objects as a whole. In many s...
متن کاملPerceptron-like Algorithms and Generalization Bounds for Learning to Rank
Learning to rank is a supervised learning problem where the output space is the space of rankings but the supervision space is the space of relevance scores. We make theoretical contributions to the learning to rank problem both in the online and batch settings. First, we propose a perceptron-like algorithm for learning a ranking function in an online setting. Our algorithm is an extension of t...
متن کاملTop-k Consistency of Learning to Rank Methods
This paper is concerned with the consistency analysis on listwise ranking methods. Among various ranking methods, the listwise methods have competitive performances on benchmark datasets and are regarded as one of the state-of-the-art approaches. Most listwise ranking methods manage to optimize ranking on the whole list (permutation) of objects, however, in practical applications such as inform...
متن کاملLarge Scale Co-Regularized Ranking
As unlabeled data is usually easy to collect, semisupervised learning algorithms that can be trained on large amounts of unlabeled and labeled data are becoming increasingly popular for ranking and preference learning problems [6, 23, 8, 21]. However, the computational complexity of the vast majority of these (pairwise) ranking and preference learning methods is super-linear, as optimizing an o...
متن کاملذخیره در منابع من
با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید
برای دانلود متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید
ثبت ناماگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید
ورودعنوان ژورنال:
- JCP
دوره 6 شماره
صفحات -
تاریخ انتشار 2011